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Abstract

We introduce a novel dictionary learning strategy for re-
moval of footprint patterns and random noise in seismic
data. To this end, we construct an augmented dictionary
based solely on the atoms learned from the coherence-
constrained dictionary learning (CDL), a method that is very
effective on attenuating random noise. It turns out that
when seismic data is contaminated with acquisition and/or
processing footprint, the atoms of the learned dictionary
are contaminated by coherent noise patterns. Hence, it
is necessary to carry out a morphological and/or texture
attribute classification of the atoms for effective footprint
removal. Instead, the method that we propose relies on
an augmented dictionary that is constructed using a sim-
ple data-driven empirical mode decomposition (EMD) algo-
rithm, which leads to a dictionary that contains signal atoms
and a residual dictionary that contains footprint atoms. This
avoids the use of complex statistical classifications strate-
gies to segregate the atoms of the learned dictionary. As
in CDL, the proposed method does not require the user to
know or adjust the noise level or the sparsity of the solu-
tion for each data set. Further, it only requires one pass
of CDL dictionary learning and is shown to produce suc-
cessful transfer learning results in field data. This leads
to a speed-up of the denoising processing, since random
and coherent noise can be removed without calculating the
augmented dictionary for each time slice of the 3D data vol-
ume. Results on field data demonstrate effective footprint
removal with accurate edge preservation on time slices of
3D seismic poststack data.

Introduction

The removal of unwanted noise is a crucial step for reg-
ularization, processing and interpretation of seismic data.
A proper denoising facilitates the workflow that ultimately
leads to decision-making and reservoir evaluation in the
industry. For these reasons, the preservation of features
of geological interest plays a crucial step in the process
of noise removal (Fehmers and Höcker, 2003). Coherent
noise patterns arise from limitations on acquisition design,
acquisition equipment, and the processing workflow ap-
plied to the recorded seismic data. These patterns, known
as acquisition footprint, have a undesired effect in seismic
analysis, most noticeable by reducing the level of confi-
dence on the identification of geological structures from co-

herence attributes (Marfurt et al., 1998). Minimizing the im-
pact of acquisition footprint in the analysis of seismic data
is therefore of interest (Alali et al., 2018).

Footprint attenuation is commonly attempted in the fre-
quency/wavenumber domain. Al-Bannagi et al. (2004)
adapt the truncated singular value decomposition algorithm
to suppress random noise and footprint related to seismic
acquisition. Falconer and Marfurt (2008) use wavenum-
ber filtering followed by adaptive subtraction to detect, en-
hance and properly remove footprint patterns from seis-
mic time slices. Chopra and Larsen (2000) applies a
two-pass frequency-wavenumber filtering of individual time
slices from 3D seismic data to suppress acquisition foot-
print. Drummond et al. (2000) removes periodic striations
due to coherent noise leakage from 3D seismic data by
wavenumber notch filtering of each time slice. Soubaras
(2002) presents a procedure to design a wavenumber filter
to attenuate the acquisition footprint of seismic data due to
acquisition geometry. Zhang (2009) performs footprint re-
moval with basis pursuit using Daubechies wavelets with in-
creased symmetry. To be successful in removing the noise,
most of these techniques require to carry out a quality-
control (QC) of the applied muting filter prior to subtraction,
and to manually repeat this QC for every time slice.

Techniques of dictionary learning (DL) borrowed from
the field of sparse and redundant representation of sig-
nals (Mallat, 1999; Elad, 2010) provide several methods to
tackle noise removal in seismic data (Beckouche and Ma,
2014; Turquais et al., 2017b, 2018; Zu et al., 2019). A dic-
tionary is a collection of vectors known as atoms that rep-
resent elementary patterns of the data. The objective is to
represent the data very closely using linear combinations
of a few atoms. The learning process of DL involves an
optimization scheme that alternatively calculates a sparse
representation of the data and updates the dictionary.

A two-pass DL strategy is applied by Beckouche and Ma
(2014) to denoise seismic data. In the first pass, learning
and denoising is achieved on the original data for an as-
sumed noise variance. In the second pass, using a smaller
noise variance, the whole process of learning and denois-
ing is applied to the previous processed data to yield the
final result. This DL method yields results which can be
superior to wavelets, curvelets, and total variation alterna-
tives. Turquais et al. (2017b) introduces the coherence-
constrained dictionary learning (CDL) for random noise de-
noising of seismic data. The CDL can be applied to data
with noise of variable variance, and does not require the
interpreter to set thresholds for the noise variance nor the
sparsity of the data representation, another key parame-
ter required by most DL methods. In order to remove co-
herent noise, atom classification strategies are introduced
by Turquais et al. (2017a) to differentiate between struc-
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tured noise and seismic signal in marine data. The train-
ing and denoising in DL is done on patches selected from
the seismic input. Different patching strategies can be im-
plemented in order to accelerate the learning process (Zu
et al., 2019) and improve random noise removal (Yu et al.,
2016).

With the motivation to reduce the imprint of footprint from
seismic data using a DL strategy, we propose a novel adap-
tive DL algorithm for the removal of random and coherent
noise in seismic data. To this end, we introduce the resid-
ual dictionary denoising (RDD) algorithm. We show that
RDD allows to remove random noise and footprint signa-
tures from field data. Also, we demonstrate that the pro-
posed method is capable of transfer learning, where the
augmented dictionary that is learned in a given time slice
can be applied, automatically, for noise attenuation to other
time slices. The method does not involve more than one
cycle of DL to denoise an entire seismic subset. By using
an empirical mode decomposition (EMD) algorithm (Huang
et al., 1998), very competitive results, with respect to strate-
gies based on source separation and atom classification
are shown. The method we describe can be viewed as a
data-driven source separation algorithm.

Background theory

The basic idea of the method to be described stems from
the observation that, although the removal of random noise
is achieved very successfully by CDL, the learned dictio-
nary is often a mixture of data and coherent noise patterns.
The EMD step is an alternative way to remove the over-
lapping textures from each vector in the learned dictionary,
from which an augmented dictionary can then be defined.
The augmented dictionary is applied to remove not only ran-
dom, but also coherent noise in an automatic, data-driven
manner.

Following Mallat (1999), the coherence of a vector r relative
to a dictionary D of K atoms is defined by

μ(r,D) = maxj

∣∣∣∣⟨ r

||r|| ,dj

⟩∣∣∣∣ , (1)

where ⟨·⟩ means inner product, dj is the j-th atom of the
dictionary, and 1 ⩽ j ⩽ K. A coherence matching pur-
suit denoising decomposes a signal as long as the coher-
ence of the residue (difference between the recording z and
the sparse approximation Dx̂) is above μ̂ and stops when
μ(r,D) < μ̂ is satisfied, for a given coherence threshold μ̂.
At this point, the residue is considered to be uncorrelated
with respect to any dj ∈ D. The recording z is a 2D patch
of size

√
N ×

√
N taken from the seismic image which is

vectorized into a N × 1 column vector.

In this context, a coherence-constrained dictionary learning
scheme (Turquais et al., 2017b) can be obtained by solving
the following constrained optimization problem:

{X̂, D̂} = argmin
X,D

||X||0 s.t. min
D

||R||2F and μ(R,D) ⩽ μ̂,

(2)
where R = Z−DX is the residue matrix, whose columns
are given by Ri = zi − Dxi, || · ||F is the Frobenius norm,

and μ(R,D) is a short-hand to denote μ(zi − Dxi,D) for
i = 1, . . . ,M. The problem posed by equation 2 is nu-
merically approximated by an alternating two-step process.
The alternating optimization scheme entails a sparse cod-
ing step (where orthogonal matching pursuit can be used
to find the sparse coefficients x̂i), and a dictionary update
step (where approximate k-SVD can be applied to find a
new dictionary). Please, refer to Turquais et al. (2017b) for
details.

For Gaussian noise, Turquais et al. (2017b) demonstrates
that

μ̂ =
√

2 logK/N. (3)

This important result means that the coherence constrained
dictionary learning allows for random noise attenuation
without the need to know data priors such as the noise vari-
ance or the cardinality of the sparse approximation x̂.

The empirical mode decomposition (EMD) proposed
by Huang et al. (1998) decomposes a given 1D signal d into
a series of intrinsic mode functions (IMFs) plus a residue,

d =
i=I∑
i=1

IMFi +Rd. (4)

The IMFs are amplitude- and frequency-modulated signal
components, which satisfy the conditions of having zero
mean and a number of extrema equal (or different at most
by one) to the number of zero crossings (Huang et al.,
1998). The number i of IMFs used to decompose the in-
put signal depends on the data itself. The EMD stands out
as a complete data-driven strategy to separate 1D signal
into separate spectral bands. In particular, the first intrinsic
mode, IMF1, is usually removed to perform denoising be-
cause it is the most oscillating component of the signal (Bat-
tista et al., 2007; Macelloni et al., 2011). The first IMF is ob-
tained by an iterative process called sifting, a process that
requires the calculation of the mean envelope from the ex-
trema points of the input signal, usually by means of spline
interpolation. Then, this envelope is subtracted from the
signal to form the residue. The sifting process is repeated
until the residue satisfies the conditions of being an IMF. At
this point, the resulting residue is regarded to be the first
IMF of the data. Subsequent IMFs are derived by subtract-
ing the previous IMF from the original signal d and repeat-
ing the iterative sifting process just described. The sifting
iterations can be stopped, for example, after a number of
iterations is reached. The EMD algorithm we apply in the
tests is based on the sifting strategy proposed by He et al.
(2017), which is a recent and fast approach to EMD using
separable operators and does not involve splines interpo-
lation.

Method

Given the input time slice y of size Nx ×Ny, we consider all
the patches z as columns of the matrix Y. Both the initial
dictionaryD0 and the training setYM to learn the dictionary
D can be determined by selecting M + K random columns
fromY; M for the training set, and K for the initial dictionary.

Sixteenth International Congress of the Brazilian Geophysical Society



GOMEZ AND VELIS 3

Other possibilities do exist to select the training data set and
the initial dictionary (Yu et al., 2016). After CDL, we filter
each atom of the learned dictionary D by EMD removing
its first intrinsic mode function (IMF1),

dEMD
j = dj − IMF1

j , (5)

which leads to the filtered dictionaryDEMD. Having obtained
the filtered dictionary DEMD, we obtain the residual dictio-
nary Dr = D − DEMD. With these dictionary components,
we build the augmented dictionary Df = DEMD ∪Dr, which
has 2K atoms. Having setDf, the sparse representation of
each patch is obtained, producing the matrixX where each
column contains the sparse representation of each column
of Y. Finally, the original data is reconstructed using only
the atoms not related to footprint signatures. To that end,
once the sparse coefficients X are obtained by means of a
greedy algorithm from Df, the removal of random and co-
herent noise is given by

Ŷ = DEMDX[:K, :], (6)

where X[:K, :] means taking the first K coefficients of each
column in X. Having obtained the sparse coefficients us-
ing Df allows for a proper separation of the energy of the
seismic structures, from the energy of the coherent and un-
desired noise. Note that for augmenting the dictionary and
performing the denoising of equation 6, no dictionary up-
date is required. The matrix Ŷ is finally assembled to yield
the denoised image ŷ. In practice, we reconstruct the foot-
print (we use the atoms from the residual dictionaryDr) and
subtract this result to the input data.

The augmented dictionary learned from a given time slice
can be applied to their neighbor time slices with successful
results, in what is known as transfer learning by the ma-
chine learning community (Goodfellow et al., 2016). The
transfer learning gives the opportunity to exploit the ob-
tained augmented dictionary, avoiding the need to carry out
a QC of the results for each time slice in order to tune the
denoising filter being applied.

The workflow of the proposed method can be summarized
as follows:

1. Take all patches from the seismic input y to obtain Y.
2. Select random columns from Y to obtain the training

set YM and the initial dictionary D0.
3. Apply CDL to learn the dictionary D.
4. Filter each atom of D with EMD to yield DEMD.
5. Augment the dictionary: Df = DEMD ∪ (D−DEMD).
6. Obtain the sparse coefficients X using Df.
7. Obtain Ŷ by denoising with DEMD and the first K coef-

ficients of X.
8. Assemble the patches of Ŷ to obtain the denoised re-

sult ŷ.

Contrary to Turquais et al. (2017a), the proposed tech-
nique does not require to investigate appropriate texture
attributes to perform atom separation. As to any DL al-
gorithm, the proposed method is very flexible and can be

adapted to numerous strategies. For example, the aug-
mented dictionary associated with every time slice can be
used to define an initial dictionary to perform CDL and
source separation. A degree of mixture between atoms can
be included by filtering with more than the K initial atoms.
Also, a dictionary based solely on IMFs of the atoms can
be used to initialize CDL and the source separation. Al-
though we focus the proposed scheme in processing time
slices, the filtering can also be applied in 3D patches of the
seismic volumes, or in the inline and crossline directions.

Results

We illustrate the method by means of a field data exam-
ple. To this end we select the Penobscot (Nova Scotia De-
partment of Energy, 1992) poststack subset from Kington
(2015), since it offers the unique opportunity of a public do-
main data set that contains both random noise and foot-
print patterns. In particular, the footprint patterns of this
subset, which are more evident on the shallow time slices,
consist on a series of stripes of variable length that follow
the crossline direction, as shown in Figure 4a.

To perform CDL, the atom size is kept to a minimum of
N = 9 × 9 samples, a number of K = N atoms is selected,
2% of the patches are taken for training, and the dictionary
update is iterated 10 times. We run the atom filtering using
5 sifting iterations of EMD and remove the first IMF from
each atom, which can be regarded as the default settings
for filtering the learned dictionary. Other parameter settings
can improve the results presented herein.

The dictionary learned by CDL for time slice t = 0.116 s
is shown in Figure 2a. Since the dictionary is learned on
data fully contaminated by coherent noise, it is a mixture
of atoms representing both signal and footprint. Figure 2b
shows the filtered dictionary by EMD filtering, and Figure 2c
the residual dictionary. A set of atoms before and after ap-
plying EMD can be appreciated in Figure 1. The energy
from the coherent noisy pattern is strongly attenuated when
taking into account the filtered and residual dictionaries to-
gether.

Figure 3 displays the results of using the dictionaries D
and DEMD separately. In the first case, we clearly observe
that while random noise is attenuated satisfactorily, foot-
print signatures are enhanced (Figure 3a). On the other
hand, edges are blurred by usingDEMD only (Figure 3c). In
both cases, the residuals show the significant signal leak-
age and details that are lost in the processing.

Figure 4 shows the results of using the augmented dictio-
nary Df. We can observe that for this data set, both ran-
dom noise and coherent noisy patterns were successfully
attenuated with edge preservation. To yield this result, a
minimum user intervention was required. Namely, setting
the parameters for CDL and the number of sifting iterations.
Figure 5 shows the impact of the denoising on the Sobel
magnitude filter. The uncertainty produced by the coherent
noise has been greatly reduced, simplifying the identifica-
tion and delineation of seismic structures.

Figure 6 illustrates the transfer learning capabilities of the
method. In the example, the augmented dictionary for
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Figure 1 – Original atoms from the learned dictionary
(black). Filtered atoms after removal of the first IMF (or-
ange).

t = 0.116 s is applied for the time slice t = 0.136 s. The
result is encouraging, since it proves that the method effec-
tively reduces noise for data not from the same time slice
from where the augmented dictionary was derived. This
result is useful to save processing time in industrial appli-
cations, since the dictionary does not need to be learned for
each time slice of a seismic 3D data to produce acceptable
results.

Conclusions

We presented an alternative algorithm to perform dictio-
nary learning for random and coherent noise removal in
seismic data. The method is an alternative to the stan-
dard footprint removal in the frequency/wavenumber do-
main, which is widely applied in the industry. Our proposed
technique uses coherence-constrained dictionary learning
coupled with empirical mode decomposition. The dictionary
learning provides the resource to learn a set of atoms which
are a mixture of seismic structures and coherent acquisition
footprint patterns which are capable of filtering out random
noise. The filtering of each atom in the learned dictionary
leads to an augmented set of atoms that comprises the fil-
tered dictionary and the residual dictionary. The atoms in
the residual dictionary can represent the footprint and allow
for automated source separation. The introduced method
does not require to perform atom selection to separate co-
herent noise from seismic amplitudes. Its transfer learn-
ing capabilities automates and simplifies the denoising pro-
cess. Results on seismic field data are encouraging, show-
ing the benefits of the proposed residual dictionary learning
technique.
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